South Coast AQMD Site Survey Report for Rubidoux

Last updated: May 19, 2022

AQS ID	ARB Number	Site Start Date	Reporting Agency and Agency Code
060658001	33144	09/1972	South Coast AQMD (0972)

Site Address	County	Air Basin	Latitude	Longitude	Elevation
5888 Mission Blvd. Riverside, CA 92509	Riverside	South Coast	33° 59' 58"N	117° 24' 57"W	248

Detailed Site Information

Local site name							
AQS ID			Rubidoux 060658001				
GPS coordinates (decin	nal degrees)		Latitude: 33° 59' 58" Longitude: 117° 24' 57"				
Street Address	iai degrees)		ssion Blvd., Riverside, CA				
County		Riverside		1,200,			
Distance to roadways (r	meters)	119; 686					
Traffic count (AADT, y			2012; 60/Valley Way, 14.	5 000 2011			
Groundcover	Cury	Gravel	2012, 00, valley (vaj, 11.	2,000, 2011			
(e.g. asphalt, dirt, sand)		Graver					
Representative statistica		40140-Ri	iverside-San Bernardino-	Ontario, CA MSA			
(i.e. MSA, CBSA, other				- ··· ·, - ··			
Pollutant, POC	Carbon Mon	oxide, 1	Nitrogen Dioxide, 2	Ozone, 1	Nitrogen Dioxide, 3		
Primary / QA	N/A	<u> </u>	N/A	N/A	N/A		
Collocated / Other							
Parameter code	42101		42602	44201	42602		
Basic monitoring	NAAQS		NAAQS	NAAQS	NAAQS		
objective(s)							
Site type(s)	Population E	Exposure	Population Exposure	Highest	Highest		
	1	•		Concentration	Concentration		
Monitor (type)	SLAMS		SLAMS	SLAMS	SLAMS		
Network affiliation	PAMS/NAT	ΓS/NCore	PAMS/NATTS/NCore	PAMS/NATTS/NCore	PAMS/NCORE		
Instrument	Horiba APM	IA 370	Teledyne T200	Teledyne T400	Teledyne T500U		
manufacturer and							
model							
Method code	158		099	087	212		
FRM/FEM/ARM/	FRM		FRM	FEM	FEM		
other							
Collecting Agency	South Coast	AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD		
Analytical Lab (i.e.,	N/A		N/A	N/A	N/A		
weigh lab, toxics lab,							
other)							
Reporting Agency	South Coast		South Coast AQMD	South Coast AQMD	South Coast AQMD		
Spatial scale (e.g.	Neighborhoo	od	Urban	Urban	Neighborhood		
micro, neighborhood)							
Monitoring start date	09/1972		09/1972	09/1972	06/01/2019		
(MM/DD/YYYY)							
Current sampling	1:1		1:1	1:1	Continuous		
frequency (e.g.1:3,							
continuous)				/.	/.		
Calculated sampling	N/A		N/A	N/A	N/A		
frequency							
(e.g. 1:3/1:1)	01/01 12/21		01/01 10/01	01/01 10/01	01/01 10/01		
Sampling season	01/01-12/31		01/01-12/31	01/01-12/31	01/01-12/31		
(MM/DD-MM/DD)	4.0		4.0	4.0	4.0		
Probe height (meters)	4.0		4.0	4.0	4.0		
Distance from	1.52 Roof itself is	,	1.52 Roof itself is	1.52 Roof itself is	1.52 Roof itself is		
supporting structure	supporting s						
(meters) Distance from		u ucture.	supporting structure.	supporting structure.	supporting structure.		
obstructions on roof	N/A		N/A	N/A	N/A		
(meters)							
(meters)							

Distance from	N/A	N/A	N/A	N/A
obstructions not on roof (meters)				
Distance from trees	N/A	N/A	N/A	N/A
(meters)	11/11	11/11	1771	
Distance to furnace or	N/A	N/A	N/A	N/A
incinerator flue				
(meters)	NT/A	NT/A	NT/A	NY/A
Distance between collocated monitors	N/A	N/A	N/A	N/A
(meters)				
Unrestricted airflow	360°	360°	360°	360°
(degrees)				
Probe material for	Teflon	Teflon	Teflon	Teflon
reactive gases				
(e.g. Pyrex, stainless steel, Teflon)				
Residence time for	6.9	13.1	8.4	8.1
reactive gases	0.7	13.1	0.1	0.1
(seconds)				
Will there be changes	No	No	No	No
within the next 18				
months? (Y/N)	NT/A	NT/A	NT/A	NY/A
Is it suitable for comparison against	N/A	N/A	N/A	N/A
the annual PM2.5?				
(Y/N)				
Frequency of flow	N/A	N/A	N/A	N/A
rate verification for				
manual PM samplers	27/4	27/4	27/4	27/4
Frequency of flow rate verification for	N/A	N/A	N/A	N/A
automated PM				
analyzers				
Frequency of one-	Nightly	Nightly	Nightly	Nightly
point QC check for				
gaseous instruments	02/11/2021	02/11/2021	02/11/2021	02/11/2021
Last Annual Performance	03/11/2021	03/11/2021	03/11/2021	03/11/2021
Evaluation for				
gaseous parameters				
(MM/DD/YYYY)				
Last two semi-annual	N/A	N/A	N/A	N/A
flow rate audits for				
PM monitors (MM/DD/YYYY,				
(MM/DD/YYYY)				
11111/00/1111)	I .			

Pollutant, POC	Continuous PM2.5, 3	Continuous PM10, 3	Carbonyls, 4
Primary / QA	Other	Primary	N/A
Collocated / Other		-	
Parameter code	88101	81102	PAMS priority
			compounds
Basic monitoring objective(s)	NAAQS	NAAQS	Research
Site type(s)	Highest	Highest	Highest
Site type(s)	Concentration	Concentration	Concentration
Monitor (type)	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	NATTS
Instrument	Met One BAM 1020	Met One BAM 1020	Atec 8000
manufacturer and	Wet One BAW 1020	Wet One BAW 1020	Alec 8000
model	170	122	170
Method code	170	122	179
FRM/FEM/ARM/ other	FEM	FEM	Other
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e., weigh lab, toxics lab, other)	N/A	N/A	South Coast AQMD
Reporting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD
Spatial scale (e.g. micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	12/2008	07/30/2011	04/03/2018
Current sampling frequency (e.g.1:3, continuous)	1:1	1:1	1:6
Calculated sampling frequency (e.g. 1:3/1:1)	N/A	N/A	No CFR mandated sampling schedule.
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4	4	4
Distance from supporting structure (meters)	2	2	1 *Roof itself is supporting structure.
Distance from obstructions on roof (meters)	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A
Distance from trees (meters)	N/A	N/A	10
Distance to furnace or incinerator flue (meters)	N/A	N/A	N/A
Distance between collocated monitors (meters)	1(Flow <200 lpm)	4	4

Unrestricted airflow (degrees)	360°	360°	360°
Probe material for reactive gases (e.g. Pyrex, stainless steel, Teflon)	N/A	N/A	Stainless steel
Residence time for reactive gases (seconds)	N/A	N/A	8.3
Will there be changes within the next 18 months? (Y/N)	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	Yes	N/A	N/A
Frequency of flow rate verification for manual PM samplers	N/A	N/A	N/A
Frequency of flow rate verification for automated PM analyzers	Monthly	Monthly	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	Annually
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	05/05/2021 Blanking Only
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	04/29/2021 09/29/2021	04/29/2021 09/29/2021	05/21/2021 12/07/2021

24 Hour VOCs, 4	24 Hour VOCs, N/A	Carbonyls, 13	Hourly VOCs, 11
N/A	QA Collocated	N/A	N/A
	_		PAMS Priority
Research	Research	Research	Research
Highest	Highest	Highest	Highest
			Concentration
			SLAMS
			PAMS
	RM Env. 910		Agilent Markes
110	110	179	227
Other	Other	Other	Other
South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
			South Coast AQMD
Neighborhood	Neighborhood	Neighborhood	Neighborhood
			06/01/2019
1:6	1:Every other month		1:1 Intensive PAMS
		3 Day x 3 x 8 hour	
N/A	N/A		No CFR mandated
		sampling schedule.	sampling schedule.
01/01 12/21	01/01 12/21	05/01/00/20	05/01/00/20
01/01-12/31	01/01-12/31	05/01-09/30	05/01-09/30
4	4	4	3.0
1	1	1	2.0
*Roof itself is	*Roof itself is	*Roof itself is	
supporting structure.	supporting structure.	supporting structure.	
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
37/4	27/4	NY/4	27/4
N/A	N/A	N/A	N/A
	N/A	N/A	N/A
1 (EL	1 15(7/3	I IN/A	N/A
1 (Flow <200 lpm)	IN/A	1771	
1 (Flow <200 lpm)	N/A	1771	
1 (Flow <200 lpm) 360°	360°	360°	360
	N/A NATTS Priority Compounds Research Highest Concentration SLAMS NATTS RM Env. 910 110 Other South Coast AQMD South Coast AQMD Neighborhood 09/2007 1:6 N/A 01/01-12/31 4 1 *Roof itself is supporting structure.	N/A QA Collocated NATTS Priority Compounds Research Research Highest Concentration SLAMS NATTS RM Env. 910 110 Other South Coast AQMD South Coast AQMD South Coast AQMD Neighborhood Neighborhood Neighborhood N/A N/A N/A N/A N/A N/A N/A N/	N/A QA Collocated N/A NATTS Priority Compounds Compounds Research Research Research Research Highest Concentration Concentration SLAMS SLAMS SLAMS NATTS NATTS PAMS RM Env. 910 RM Env. 910 Atec 8000 110 110 179 Other Other Other South Coast AQMD Neighborhood Neighborhood Neighborhood Neighborhood 1:6 1:Every other month Intensive PAMS 3 Day x 3 x 8 hour N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Probe material for	Stainless steel	Stainless steel	Stainless steel	Pyrex, Stainless steel
reactive gases				
(e.g. Pyrex, stainless				
steel, Teflon)				
Residence time for	8.4	8.3	8.3	10
reactive gases				
(seconds)				
Will there be changes	No	No	No	No
within the next 18				
months? (Y/N)		37/1	37/	1
Is it suitable for	N/A	N/A	N/A	N/A
comparison against the annual PM2.5?				
(Y/N) Frequency of flow	N/A	N/A	N/A	N/A
rate verification PM	IN/A	IN/A	IN/A	IN/A
samplers				
Frequency of flow	N/A	N/A	N/A	N/A
rate verification for	IV/A	IV/A	IV/A	IV/A
automated PM				
analyzers				
Frequency of one-	Annually	Annually	Annually	N/A
point QC check for				
gaseous instruments				
Last Annual	05/05/2021	05/05/2021	05/05/2021	N/A
Performance			Blanking Only	
Evaluation for				
gaseous parameters				
(MM/DD/YYYY)				
Last two semi-annual	05/21/2021	05/21/2021	05/21/2021	N/A
flow rate audits for	12/17/2021	12/17/2021	12/07/2021	
PM monitors				
(MM/DD/YYYY,				
MM/DD/YYYY)				

Pollutant, POC	VOCs, 5	24 Hour PM2.5, 2	24 Hour PM2.5, 1	Speciated PM2.5, 11
Primary / QA	N/A	QA Collocated	Primary	Primary
Collocated / Other				
Parameter code	N/A	88101	88101	88502
Basic monitoring	Research	NAAQS	NAAQS	Research
objective(s)	TT' -1	II' -1	TT' -14	TT' -14
Site type(s)	Highest Concentration	Highest Concentration	Highest Concentration	Highest Concentration
Manitan (tama)	SLAMS	SLAMS	SLAMS	SLAMS
Monitor (type) Network Affiliation		N/A	N/A	N/A
Instrument	N/A Xontech 910	Thermo 2025i	Thermo 2025i	Met One SASS
manufacturer and	Aontech 910	PM2.5, B Sampler	PM2.5, A Sampler	Wet One SASS
model		QA Collocated	FWIZ.3, A Sampler	
Method code	N/A	145	145	810
FRM/FEM/ARM/	Other	FRM	FRM	Other
other	Other	TIXIVI	TIXIVI	Other
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e.,	ARB Toxics	South Coast AQMD	South Coast AQMD South Coast AQMD	South Coast AQMD South Coast AQMD
weigh lab, toxics lab,	AKD TOXICS	South Coast AQMD	South Coast AQMD	South Coast AQMD
other)				
Reporting Agency	ARB	South Coast AQMD	South Coast AQMD	South Coast AQMD
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)	ricignoomood	ricignoomood	reignoomood	T (eight of hood
Monitoring start date	01/1989	01/03/1999	12/04/1998	10/13/2004
(MM/DD/YYYY)	01/1/0/	01/03/1999	12/01/1990	10/13/2001
Current sampling	1:12	1:6	1:1	1:6
frequency (e.g.1:3,	1112	1.0	111	1.0
continuous)				
Calculated sampling	N/A	1:6	1:3	No CFR mandated
frequency				sampling schedule.
(e.g. 1:3/1:1)				
Sampling season	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
(MM/DD-MM/DD)				
Probe height (meters)	4	4.0	4.0	3
Distance from	1.0	2.0	2.0	2.0
supporting structure	*Roof itself is			
(meters)	supporting structure.			
Distance from	N/A	N/A	N/A	N/A
obstructions on roof				
(meters)				
Distance from	N/A	N/A	N/A	N/A
obstructions not on				
roof (meters)				
Distance from trees	N/A	10	10	10
(meters)	27/4		NY/1	77/1
Distance to furnace or	N/A	N/A	N/A	N/A
incinerator flue				
(meters)	27/4	1.5/101 2001	1.5/51 2001	
D'	N/A	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)	2
Distance between	14/11			
collocated monitors	14/21			
	360°	360°	360°	360°

Probe material for reactive gases (e.g. Pyrex, stainless steel, Teflon)	Stainless steel	N/A	N/A	N/A
Residence time for reactive gases (seconds)	N/A	N/A	N/A	N/A
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	N/A	Yes	Yes	N/A
Frequency of flow rate verification for manual PM samplers	N/A	Monthly	Monthly	Monthly
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	Semi Annually	N/A	N/A	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	N/A ARB	04/29/2021 09/29/2021	04/29/2021 09/29/2021	04/29/2021 09/29/2021

Pollutant, POC	Speciated PM2.5, N/A	Speciated PM2.5, N/A	PM2.5 Carbon, N/A	PM2.5 Carbon, N/A
Primary / QA Collocated / Other	Primary	QA Collocated	Primary	QA Collocated
Parameter code	N/A	N/A	N/A	N/A
Basic monitoring	Research	Research	Research	Research
objective(s)				
Site type(s)	Highest	Highest	Highest	Highest
3.6 1. (.)	Concentration	Concentration	Concentration	Concentration
Monitor (type)	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	STN	STN	STN	STN
Instrument manufacturer and	Met One SASS, A Sampler	Met One SASS, B Sampler	URG-3000N, A Sampler	URG-3000N, B Sampler
model	A Sampler	b Sampler	A Sampler	b Sampler
Method code	N/A	N/A	N/A	N/A
FRM/FEM/ARM/	Other	Other	Other	Other
other	Other	Other	Other	Other
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e.,	EPA STN	EPA STN	EPA STN	EPA STN
weigh lab, toxics lab, other)	LIASIN	LIASIN	LIASIN	LIASIN
Reporting Agency	EPA	EPA	EPA	EPA
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)				
Monitoring start date (MM/DD/YYYY)	03/2001	03/2001	05/2007	05/2007
Current sampling frequency (e.g.1:3, continuous)	1:3	1:6	1:3	1:6
Calculated sampling frequency (e.g. 1:3/1:1)	1:3	1:6	1:3	1:6
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	3.0	3.0	3.0	3.0
Distance from supporting structure (meters)	2.0	2.0	2.0	2.0
Distance from obstructions on roof (meters)	N/A	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A	N/A
Distance from trees (meters)	N/A	N/A	N/A	N/A
Distance to furnace or incinerator flue (meters)	N/A	N/A	N/A	N/A
Distance between collocated monitors (meters)	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)
Unrestricted airflow (degrees)	360°	360°	360°	360°

Probe material for reactive gases (e.g. Pyrex, stainless steel, Teflon)	N/A	N/A	N/A	N/A
Residence time for reactive gases (seconds)	N/A	N/A	N/A	N/A
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	N/A	N/A	N/A	N/A
Frequency of flow rate verification for manual PM samplers	Monthly	Monthly	Monthly	Monthly
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	N/A	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	04/29/2021 09/29/2021	04/29/2021 09/29/2021	05/21/2021 12/07/2021	05/21/2021 12/07/2021

Pollutant, POC	Lead, 2	PM10, 2	PM10, 4	Metals, CR6, 4
Primary / QA	Primary	Primary	QA Collocated	Primary
Collocated / Other				
Parameter code	14129	81102	81102	12115
Basic monitoring objective(s)	NAAQS	NAAQS	NAAQS	Research
Site type(s)	non-source-oriented	Highest	Highest	Highest
		Concentration	Concentration	Concentration
Monitor (type)	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	NATTS	N/A	N/A	NATTS
Instrument manufacturer and	GMW 1200 TSP	Tisch TE-6001	Tisch TE-6001	RM Env. 924, A Sampler
model				
Method code	110	063	063	920
FRM/FEM/ARM/	FRM	FRM	FRM	Other
other				
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e., weigh lab, toxics lab, other)	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Reporting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)				
Monitoring start date (MM/DD/YYYY)	09/06/1990	01/01/1988	01/01/1988	01/2007
Current sampling frequency (e.g.1:3, continuous)	1:6	1:3	1:6	1:6
Calculated sampling frequency	1:6	1:6	1:6	1:6
(e.g. 1:3/1:1) Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	3.0	3.0	3.0	3.0
Distance from supporting structure (meters)	2.0	2.0	2.0	2.0
Distance from obstructions on roof (meters)	N/A	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A	N/A
Distance from trees (meters)	10	10	10	10
Distance to furnace or incinerator flue (meters)	N/A	N/A	N/A	N/A
Distance between collocated monitors (meters)	N/A	4	4	4
Unrestricted airflow (degrees)	360°	360°	360°	360°

Probe material for reactive gases (e.g. Pyrex, stainless steel, Teflon)	N/A	N/A	N/A	N/A
Residence time for reactive gases (seconds)	N/A	N/A	N/A	N/A
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	N/A	N/A	N/A	N/A
Frequency of flow rate verification for manual PM samplers	Monthly	Monthly	Monthly	Monthly
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	N/A	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	04/29/2021 09/29/2021	04/29/2021 09/29/2021	04/29/2021 09/29/2021	04/30/2021 11/23/2021

Pollutant, POC	Metals, CR6, 5	Metals, CR6,	Polycyclic Aromatic	Polycyclic Aromatic
D: /O.	01011	Carbonyls, N/A	Hydrocarbons, 1	Hydrocarbons, 2
Primary / QA Collocated / Other	QA Collocated	Primary	N/A	QA Collocated
Parameter code	12115	N/A	17202	17202
Basic monitoring objective(s)	Research	Research	Research	Research
Site type(s)	Highest	Highest	Highest	Highest
71	Concentration	Concentration	Concentration	Concentration
Monitor (type)	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	NATTS	N/A	NATTS	NATTS
Instrument	RM Env. 924, B	RM Env. 924	Tisch Env. PUF, A	Tisch Env. PUF, B
manufacturer and model	Sampler		Sampler	Sampler
Method code	920	N/A	106	106
FRM/FEM/ARM/	Other	Other	Other	Other
other	Other	Other	Other	Other
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e.,	South Coast AQMD	ARB Toxics	ERG North Carolina	ERG North Carolina
weigh lab, toxics lab, other)	South Coast AQMD	ARD TOXICS	EKG North Caronna	EKO Worth Caronna
Reporting Agency	South Coast AQMD	ARB	ERG North Carolina	ERG North Carolina
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)				
Monitoring start date (MM/DD/YYYY)	01/2007	01/1989	07/2007	07/2007
Current sampling frequency (e.g.1:3, continuous)	1:Every other month	1:12	1:6	1:Every other month
Calculated sampling frequency (e.g. 1:3/1:1)	No CFR mandated sampling schedule.			
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	3	3	3	3
Distance from supporting structure (meters)	2	2	2	2
Distance from obstructions on roof (meters)	N/A	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A	N/A
Distance from trees (meters)	N/A	N/A	N/A	N/A
Distance to furnace or incinerator flue (meters)	N/A	N/A	N/A	N/A
Distance between collocated monitors (meters)	3	3	3	3
Unrestricted airflow (degrees)	360°	360°	360°	360°

Probe material for reactive gases (e.g. Pyrex, stainless steel, Teflon)	N/A	N/A	N/A	N/A
Residence time for reactive gases (seconds)	N/A	N/A	N/A	N/A
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	N/A	N/A	N/A	N/A
Frequency of flow rate verification for manual PM samplers	Monthly	N/A	Monthly	Monthly
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	N/A	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	04/30/2021 11/23/2021	N/A	N/A	N/A

Pollutant, POC	Carbon Monoxide, 9	Sulfur Dioxide, 9	NOY, 9	WS & D, 1/1
Primary / QA	N/A	N/A	N/A	N/A
Collocated / Other				
Parameter code	42101	42401	42612	61101/61102
Basic monitoring	NAAQS	NAAQS	Research	Research
objective(s)				
Site type(s)	Population Exposure	Population Exposure	Population Exposure	Meteorological
Monitor (type)	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	NCore	NCore	Ncore/PAMS	PAMS/NCORE
Instrument	Teledyne 300EU	Thermo 43i-TLE	Thermo 42i-Y	RM Young 05305V
manufacturer and				
model				
Method code	593	560	674	065/065
FRM/FEM/ARM/	FRM	FEM	N/A	N/A
other				
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e.,	N/A	N/A	N/A	N/A
weigh lab, toxics lab,				
other)				
Reporting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Spatial scale (e.g.	Neighborhood	Neighborhood	Urban	Neighborhood
micro, neighborhood)				
Monitoring start date	03/30/2010	08/03/2010	08/19/2010	09/1972
(MM/DD/YYYY)				
Current sampling	1:1	1:1	1:1	Continuous
frequency (e.g.1:3,				
continuous)				
Calculated sampling	N/A	N/A	N/A	1:1
frequency				
(e.g. 1:3/1:1)				
Sampling season	01/01/-12/31	01/01/-12/31	01/01/-12/31	01/01-12/31
(MM/DD-MM/DD)				
Probe height (meters)	4	4	10	10
Distance from	1.5	1.5	N/A	10
supporting structure	*Roof itself is	*Roof itself is		
(meters)	supporting structure.	supporting structure.		
Distance from	N/A	N/A	N/A	N/A
obstructions on roof				
(meters)				
Distance from	N/A	N/A	N/A	N/A
obstructions not on				
roof (meters)				
Distance from trees	N/A	N/A	N/A	10
(meters)				
Distance to furnace or	N/A	N/A	N/A	N/A
incinerator flue				
(meters)				
Distance between	N/A	N/A	N/A	N/A
collocated monitors				
(meters)				
Unrestricted airflow	360°	360°	360°	360°
(degrees)			<u> </u>	

Probe material for reactive gases	Teflon	Teflon	Teflon	N/A
(e.g. Pyrex, stainless steel, Teflon)				
Residence time for reactive gases (seconds)	8.9	17.1	< 20 Seconds	N/A
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	No	No	No	N/A
Frequency of flow rate verification for manual PM samplers	N/A	N/A	N/A	N/A
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	Weekly	Weekly	Weekly	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	12/16/2021	12/16/2021	12/16/2021	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	N/A	N/A	N/A	N/A

Pollutant, POC	RH/T, 1/1	BP, 1	SR, 1	UVR, 1
Primary / QA	N/A	N/A	N/A	N/A
Collocated / Other				
Parameter code	62201/62101	64101	63301	63302
Basic monitoring	Research	Research	Research	Research
objective(s)				
Site type(s)	Meteorological	Meteorological	Meteorological	Meteorological
Monitor (type)	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	PAMS/NCORE	PAMS/NCORE	PAMS/NCORE	PAMS/NCORE
Instrument	Rotronic HC2-S3	Met One 091	Kipp & Zonen CMP6	Eppley TUVR
manufacturer and				
model				
Method code	063/063	015	011	011
FRM/FEM/ARM/	N/A	N/A	N/A	N/A
other				
Collecting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Analytical Lab (i.e.,	N/A	N/A	N/A	N/A
weigh lab, toxics lab,				
other)				
Reporting Agency	South Coast AQMD	South Coast AQMD	South Coast AQMD	South Coast AQMD
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)				
Monitoring start date	09/1972	09/1972	09/1972	09/1972
(MM/DD/YYYY)				
Current sampling	Continuous	Continuous	Continuous	Continuous
frequency (e.g.1:3,				
continuous)				
Calculated sampling	1:1	1:1	1:1	1:1
frequency				
(e.g. 1:3/1:1)				
Sampling season	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
(MM/DD-MM/DD)				
Probe height (meters)	9.0	4.0	3.8	3.6
Distance from	9.0	1.6	1.4	1.2
supporting structure				
(meters)				
Distance from	N/A	N/A	N/A	N/A
obstructions on roof				
(meters)				
Distance from	N/A	N/A	N/A	N/A
obstructions not on				
roof (meters)				
Distance from trees	10	10	10	10
(meters)				
Distance to furnace or	N/A	N/A	N/A	N/A
incinerator flue				
(meters)				
Distance between	N/A	N/A	N/A	N/A
collocated monitors				
(meters)				
Unrestricted airflow	360°	360°	360°	360°
(degrees)				

Probe material for reactive gases (e.g. Pyrex, stainless	N/A	N/A	N/A	N/A
steel, Teflon) Residence time for	N/A	N/A	N/A	N/A
reactive gases (seconds)				
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	N/A	N/A	N/A	N/A
Frequency of flow rate verification for manual PM samplers	N/A	N/A	N/A	N/A
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	N/A	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	N/A	N/A	N/A	N/A

Rubidoux Site Photos

Looking North from the probe.

Looking East from the probe.

Looking South from the probe.

Looking West from the probe.

Rubidoux Site Photos (Cont.)

Looking at the probe from the North.

Looking at the probe from the East.

Looking at the probe from the South.

Looking at the probe from the West.